We Are The University

UC Scientists Discover A New Way Of Assembling Atoms

university-of-canterbury

Mon Mar 18 2013 13:00:00 GMT+1300 (New Zealand Daylight Time)

UC Scientists Discover A New Way Of Assembling Atoms

Monday, 18 March 2013, 11:02 am
Press Release: University of Canterbury

UC Scientists Discover A New Way Of Assembling Atoms

March 18, 2013

University of Canterbury (UC) scientists have discovered a new way of assembling atoms that could lead to increases in the power of cellphones, computer tablets and memory sticks.

UC physics professor Simon Brown is investigating the possibility of much smaller electronic devices with more power and data storage.

``The ultimate limit is to build things one atom at a time. We aren’t there yet, but our recent paper describes a new tool that can be used to control the assembly of atoms.

``Silicon chips are built using a process called lithography, where a large piece of silicon is sculpted so as to produce the tiny devices (called transistors) that actually do computing. The semiconductor industry knows that these processes cannot be used at much smaller scales than they are used at present and so it is important to find new ways of building at the nanoscale,’’ Professor Brown said.

This discovery provides a new way of controlling the formation of nanoscale structures as part of the research. The UC scientists involved in this work are part of the MacDiarmid Institute for Advanced Materials and Nanotechnology, which is a government-funded centre of research excellence.

Many other important products are being enabled by nanotechnology, such as a whole range of medical diagnostic devices which rely on tiny nanoscale sensing elements.

``Those nanoscale elements are critical to the way the sensors work. Researchers overseas have built sensors that can detect a single HIV virus, but the problem is that it is difficult to manufacture those devices with current technologies, and so they are not currently available to consumers. That’s why it is important we try to develop new ways of building on this tiny scale.

Advertisement - scroll to continue reading

``The new method harnesses fundamental quantum mechanical principles to `self-assemble’ structures that could be used in a range of applications, such as new computer memories and new laser technologies.

``The downstream benefits for the public possibly include new internet and computing technologies, new sensing technologies and new medical diagnostics.

``It is always hard to predict the implications. Very few people in the 1950s could have imagined the enormous impacts of the invention of the transistor. Now we have silicon chips in everything from our mobile phones to our computers to our fridges; we rely on them for an enormous range of activities,’’ Professor Brown said.

The experimental work has been conducted by postdoctoral researcher Pawel Kowalczyk and PhD student Ojas Mahapatra under Professor Brown’s supervision and was largely funded by the MacDiarmid Institute. They collaborated with researchers in the United States and China.

``Anyone who has played a musical instrument, or blown across the open end of a bottle or a pipe, knows that the musical note that is produced depends on the length of the instrument. In fact to get a nice musical note the length of the pipe must be just right.

``It should match the wavelength of the note required. In our research we discovered that because of the way quantum mechanics works - the opposite process comes into play on the nanoscale. We found that the structure tunes its size to match the wavelength of the electron waves inside it.

``This technique could be used to control the formation of quantum dots. These tiny light emitting particles are used in a wide range of medical diagnostic technologies. They are a key part of some new cancer diagnosis techniques,’’ Professor Brown said.

The new research has been published in the prestigious international journal Nano Letters.

ENDS

© Scoop Media

Advertisement - scroll to continue reading

a.supporter:hover {background:#EC4438!important;} @media screen and (max-width: 480px) { #byline-block div.byline-block {padding-right:16px;}}

Using Scoop for work?

Scoop is free for personal use, but you’ll need a licence for work use. This is part of our Ethical Paywall and how we fund Scoop. Join today with plans starting from less than $3 per week, plus gain access to exclusive Pro features.

Join Pro Individual Find out more

Find more from University of Canterbury on InfoPages.